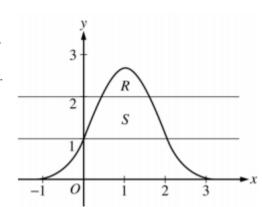

1.

Let R be the region in the first quadrant enclosed by the graphs of y = 2x and $y = x^2$, as shown in the figure above.

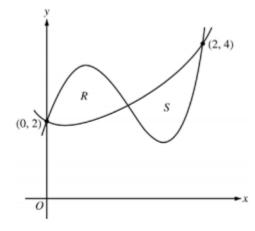
- (a) Find the area of R.
- (b) The region R is the base of a solid. For this solid, at each x the cross section perpendicular to the x-axis has area $A(x) = \sin\left(\frac{\pi}{2}x\right)$. Find the volume of the solid.
- (c) Another solid has the same base R. For this solid, the cross sections perpendicular to the y-axis are squares. Write, but do not evaluate, an integral expression for the volume of the solid.

2.


The functions f and g are given by $f(x) = \sqrt{x}$ and g(x) = 6 - x. Let R be the region bounded by the x-axis and the graphs of f and g, as shown in the figure above.

- (a) Find the area of R.
- (b) The region R is the base of a solid. For each y, where $0 \le y \le 2$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose base lies in R and whose height is 2y. Write, but do not evaluate, an integral expression that gives the volume of the solid.
- (c) There is a point P on the graph of f at which the line tangent to the graph of f is perpendicular to the graph of g. Find the coordinates of point P.

3.


Let R be the region bounded by the graph of $y = e^{2x-x^2}$ and the horizontal line y = 2, and let S be the region bounded by the graph of $y = e^{2x-x^2}$ and the horizontal lines y = 1 and y = 2, as shown above.

- (a) Find the area of R.
- (b) Find the area of S.
- (c) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 1.

Let f and g be the functions defined by $f(x) = 1 + x + e^{x^2 - 2x}$ and $g(x) = x^4 - 6.5x^2 + 6x + 2$. Let R and S be the two regions enclosed by the graphs of f and g shown in the figure above.

- (a) Find the sum of the areas of regions R and S.
- (b) Region S is the base of a solid whose cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
- (c) Let h be the vertical distance between the graphs of f and g in region S. Find the rate at which h changes with respect to x when x = 1.8.

